
The Dark Side of the Web: An Open Proxy’s View

Vivek S. Pai, Limin Wang, KyoungSoo Park, Ruoming Pang, and Larry Peterson
Department of Computer Science

Princeton University

Abstract

With the advent of large-scale, wide-area networking
testbeds, researchers can deploy long-running services
that interact with other resources on the Web. While such
interaction can easily attract clients and traffic, our expe-
rience suggests that projects accepting outside input and
interacting with outside resources must carefully consider
the avenues for abuse of such services. The CoDeeN Con-
tent Distribution Network, deployed on PlanetLab, uses a
network of caching Web proxy servers to intelligently dis-
tribute and cache requests from a potentially large client
population. Due to CoDeeN’s non-commercial nature,
content is not pushed/advertised by content providers, but
instead is pulled by clients who have configured their
browsers to use CoDeeN.

In effect, CoDeeN is one of the largest “open” proxy
networks in the world, and therefore draws unwanted at-
tention from malicious users. This paper discusses our ex-
periences with undesirable traffic on CoDeeN, the mech-
anisms we developed to curtail it, and the future direc-
tions for such work. We believe that this work provides a
safe alternative to open proxies and will encourage others
to deploy similar systems. Some of the security mecha-
nisms we are developing are suitable for ISPs to deploy on
their own networks to detect misbehaving customers be-
fore problems arise. Finally, other research projects that
allow “open” access to Web resources may face similar
situations, and may be able to adopt similar mechanisms.

1 Introduction
Researchers developing large-scale, wide-area network
projects often require real traffic to test their systems, and
one tempting option is to allow open access to their sys-
tems on the Internet. Especially for systems that can act
as conduits for data, the ability to interact with the rest
of the Internet provides a simple means for bootstrapping
demand for such services and traffic. However, we have
observed that this approach can invite traffic from mali-
cious users. In this paper, we describe our experiences
with CoDeeN, an academic Content Distribution Network
(CDN) using a network of Web proxies on PlanetLab.

Caching Web proxy servers, commonly known as prox-
ies, are widely used across the Web due to their ability

to serve repeated requests from disk. Content consumers,
such as ISPs, schools, and large organizations, use them as
forward proxiesto serve common requests locally and re-
duce the load on their slow/expensive wide-area network
links. Content providers use them asreverse proxiesto
offload work from busy Web servers. Commercial con-
tent distribution networks use them, coupled with custom
redirection logic, to widely replicate content providers’
web pages to cache content closer to clients.

CoDeeN uses proxies in all of the capacities described
above – each CoDeeN node is capable of acting as a for-
ward proxy, a reverse proxy, and a redirector. When a
client connects to a CoDeeN proxy and sends its Web re-
quests, the node first acts as a forward proxy and tries to
satisfy the requests locally. Requests not cached locally
are handled by the redirector logic, which uses policies
based on our recent work on CDN robustness [12]. Using
request locality and system load information, the redirec-
tors forward most requests to other CoDeeN nodes, which
now act as reverse proxies for these requests. Requests
still not satisfied are sent to the appropriate origin servers.

Going against conventional wisdom and standard prac-
tices, we deployed CoDeeN nodes as “open” proxies, al-
lowing client access from outside the hosting organiza-
tion. This decision was simpler than determining all of the
configuration issues required, and we assumed that an un-
publicized, experimental research network would not be
of much interest to anyone. Additionally, since we wanted
to eventually allow anyone to use CoDeeN, we did not see
any benefit in disallowing access while we were develop-
ing and testing the system. We underestimated how long
it would take for others to discover our system, and the
scope of activities for which people seek open proxies.

Network administrators generally consider open prox-
ies to be unwise for various reasons. Open proxies often
increasebandwidth usage, since WAN-connected users
double the proxy’s WAN usage when fetching and for-
warding cache misses. Of greater concern is that all out-
bound requests originate from the proxy, implicating it
in any abuse-related complaints. In CoDeeN’s early de-
velopment, a small amount of outside traffic was help-
ful, since we could observe behavior under real load. As
CoDeeN grew more stable, we noticed traffic increasing
daily, even without any publicity on our part.

1

Within days of CoDeeN becoming stable, the Planet-
Lab administrators began receiving complaints. With over
40 CoDeeN nodes, we had focused on stability and relia-
bility, and had not begun serious work on monitoring. As
a result, the complaints we received were sometimes the
first indication of abuse. These experiences led us to im-
prove our own monitoring, and probably accelerated de-
velopment of PlanetLab’s traffic logging.

Unfortunately, we were unable to find any work or
tools to “partially close” a proxy, where it could still be
used by anyone but without fear of malicious behavior.
Proxies were strictly binary in nature – either completely
restricted and useful, or completely open and rife with
abuse. With the growing rate of problems from CoDeeN’s
openness, we shut down the system while we analyzed the
problems and developed solutions. Since relaunching the
system in early June, thousands of users have accessed
CoDeeN, and have generated only two abuse complaints.
Below we describe some of the problems we encountered,
our solutions to partially close CoDeeN, and our experi-
ences with the results.

While our immediate motivation has been to secure the
CoDeeN network from the problems associated with open
proxies, we believe our techniques have broader applica-
tion. The most obvious beneficiaries are people who want
to deploy open proxies for some form of public good, such
as sharing/tolerating load spikes, avoiding censorship, or
providing community caching. Since ISPs generally de-
ploy forward proxies transparently, our techniques would
identify customers abusing other systems, before the ISP
receives complaints.

2 Problems
In this section, we discuss some of the problems we en-
countered during the early development and testing of
CoDeeN. For the purposes of discussion, we have broadly
classified the problems into those dealing with spammers,
bandwidth consumption, high request rates, content theft,
and anonymity, though we realize that some problems can
fall into multiple areas.

2.1 Spammers
The conceptually simplest category of CoDeeN abuser is
the spammer, though the mechanisms for spamming using
a proxy server are different from traditional spamming.
We encountered three different approaches – SMTP tun-
nels, CGI/formmail POST requests, and IRC spamming.
These mechanisms exist without the use of proxies, but
gain a level of indirection via proxies, complicating in-
vestigation. When faced with complaints, the administra-
tors of the affected system must cooperate with the proxy
administrators to find the actual spammer’s IP address.

SMTP tunnels – Proxies support TCP-level tunnel-
ing via the CONNECT method, mostly to support end-

10
0

10
1

10
2

10
3

10
4

10
5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

failed SMTP CONNECTs per day

Fr
ac

tio
n

of
 n

od
e−

da
ys

 <
 X

Figure 1: CONNECT activity for 38 nodes – Almost 40%
of the samples show no activity, while 20% show over 1000
attempts/day. The maximum seen is over 90K attempts to
one node in one day.

to-end SSL behavior when used as firewalls. After the
client specifies the remote machine and port number, the
proxy creates a new TCP connection and forwards data in
both directions. Our nodes disallow tunneling to port 25
(SMTP) to prevent facilitating open relay abuse, but con-
tinually receive such requests. The prevalence and magni-
tude of such attempts is shown in Figure 1. As a test, we
directed these requests to local honeypot SMTP servers.
In one day, one of our nodes captured over 100K spam e-
mails destined to 2,000,000 addresses. Another node saw
traffic jump from 3,000 failed attempts per day to 30,000
flows in 5 minutes. This increase led to a self-inflicted
denial-of-service when the local system administrator saw
the activity spike and disconnected the PlanetLab node.

POST/formmail – Some web sites use a CGI program
called formmail to allow users to mail web-based feed-
back forms to the site’s operators. Unfortunately, these
programs often store the destination e-mail address in the
form’s hidden input, relying on browsers to send along
only the e-mail address specified in the form. Spammers
abuse those scripts by generating requests with their vic-
tims’ e-mail addresses as the targets, causing the exploited
site to send spam to the victim.

IRC – IRC networks are targets for spammers due
to their weak authentication and their immediate, cap-
tive audience. Most proxies allow CONNECTs to ports
above the protected port threshold of 1024, which af-
fects IRC with its default port of 6667. IRC opera-
tors have developed their own open proxy blacklist [2],
which checks IRC participant IP addresses for open prox-
ies. We were alerted that CoDeeN was being used for
IRC spamming, and found many of our nodes blacklisted.
While the blacklists eliminate the problem for participat-
ing IRC networks, the collateral damage can be significant
if other sites begin to refuse non-IRC traffic from black-
listed nodes.

2.2 Bandwidth Hogs
CoDeeN is hosted on PlanetLab nodes, with the hosts ab-
sorbing the bandwidth costs. Since most nodes are hosted
at high-bandwidth universities, they attract people per-
forming bulk data transfers. Due to lack of locality, such
transfers provide no benefit to other CoDeeN users – they
cause cache pollution and link congestion.

Webcam Trackers– Sites such as SpotLife.com pro-
vide a simple means to use digital cameras as auto-
updating web cameras. Thissubscription-basedservice
allows the general public to broadcast their own “we-
bcams”. We noticed heavy bandwidth usage of the
SpotLife site, with individual IP addresses generating
multiple image requests per second, far above the rate lim-
its in the official SpotLife software. SpotLife claims to
bundle their software with over 60% of digital cameras,
and a community of high-rate downloaders has formed,
to SpotLife’s consternation. These users clearly have
enough bandwidth to access webcams directly, but use
CoDeeN to mask their identity.

Cross-Pacific Downloads– CoDeeN nodes in Wash-
ington and California received very high bandwidth con-
sumption with both source and destination located along
the Eastern rim of Asia. The multi-megabyte downloads
appeared to be for movies, though the reason that these
clients chose a round-trip access across the Pacific Ocean
is still not clear to us. A direct connection would presum-
ably have much lower latency, but we suspect that these
clients were banned from these sites, and required high-
bandwidth proxies to access them effectively. Given the
high international bandwidth costs in Asia, Western US
proxies were probably easier to find.

Steganographers– While large cross-Pacific trans-
fers were easy to detect in access logs, others were less
obvious. This class had high aggregate traffic, spread
across uniformly-sized, sub-megabyte files marked as
GIFs and JPEGs. Large images sizes are not uncom-
mon in broadband-rich countries such as South Korea, but
some size variation is expected given the unpredictability
of image compression. We downloaded a few of these
large files and found that they generated only tiny images
on-screen. From the URL names, we assume that these
files contain parts of movies stuffed inside image files to
hide their actual payload. However, we have not found the
appropriate decryption tools to confirm our guess.

2.3 High Request Rates
TCP’s flow/congestion controls mitigate the damage that
bulk transfers have on other CoDeeN users. In contrast,
another class of users generated enough requests that we
were concerned that CoDeeN might be implicated in a
denial-of-service attack.

Password Crackers– We found an alarming number
of clients using CoDeeN to launch dictionary attacks on

Yahoo, often via multiple CoDeeN nodes. At one point,
we were detecting roughly a dozen new clients per day.
Since Yahoo can detect multiple failed attempts to a single
account, these users try a single password across many ac-
counts. The attacks appear to be for entertainment, since
any victim will be random rather than someone known to
the attacker. The problem, again, is that the requests ap-
pear to come from CoDeeN, and if Yahoo blocks the IP
address, then other PlanetLab services are affected.

Google Crawlers – Like password crackers, we
found a number of clients performing Google web/image
searches on a series of sorted words. These were clearly
mechanical processes working from a dictionary, and their
requests were evenly spaced in time. We speculate that
these clients are trying to populate their own search en-
gines or perhaps build offline copies of Google, but cannot
understand the direct benefit of such an approach.

Click-Counters – Ad servers count impressions for
revenue purposes, and rarely do we see such accesses not
tied to actual page views. The one exception we have seen
is a game site called OutWar.com. Points are obtained
when people click on a player’s “special link”, which
delivers a Web page containing ad images. The system
apparently counts hits of the player’s link instead of ad
views, which seems to invite abuse. We have noticed a
steady stream of small requests for these links, presum-
ably from players inflating their scores.

2.4 Content Theft
The most worrisome abuse we witnessed on CoDeeN was
what we considered the most sophisticated – unauthorized
downloading of licensed content.

Licensed Content Theft – Universities purchase
address-authenticatedsite licenses for electronic journals,
limited to the IP ranges they own. PlanetLab’s acceptable
use policies disallow accessing these sites, but CoDeeN
unintentionally extended this access worldwide. We dis-
covered this problem when a site contacted PlanetLab
about suspicious activity. This site had previously experi-
enced a coordinated attack that downloaded 50K articles.
Unfortunately, such sites do not handle theX-Forwarded-
For header that some proxies support to identify the orig-
inal client IP address. Though this header can be forged,
it can be trusted whendenyingaccess, assuming nobody
would forge it to deny themselves access to a site.

Intra-domain Access – Many university Web pages
are similarly restricted by IP address, but are scat-
tered within the domain, making them hard to iden-
tify. For example, a department’s web site may
intersperse department-only pages among publically-
accessible pages. Opportunities arise if a node receives
a request for a local document, whether that request was
received directly or was forwarded by another proxy.

2.5 Anonymity
While some people use proxies for anonymity, some
anonymizers accessing CoDeeN caused us some concern.
Most added one of more layers of indirection into their
activities, complicating abuse tracking.

Request Spreaders– We found that CoDeeN nodes
were being advertised on sites that listed open proxies and
sold additional software to make testing and using proxies
easier. Some sites openly state that open proxies can be
used for bulk e-mailing, a euphemism for spam. Many
of these sites sell software that spreads requests over a
collection of proxies. Our concern was that this approach
could flood a single site from many proxies.

TCP over HTTP – Other request traffic suggested
that some sites provided HTTP-to-TCP gateways, named
http2tcp, presumably to bypass corporate firewalls. Other
than a few archived news articles on Google, we have not
been able to find more information about this tool.

Non-HTTP Port 80 – While port 80 is normally re-
served for HTTP, we also detected CONNECT tunnels
via port 80, presumably to communicate between ma-
chines without triggering firewalls or intrusion detection
systems. However, if someone were creating malformed
HTTP requests to attack remote web sites, port 80 tunnels
would complicate investigations.

Vulnerability Testing – We found bursts of odd-
looking URLs passing through CoDeeN, often having the
same URI portion of the URL and different host names.
We found lists of such URLs on the Web, designed to re-
motely test known buffer overflow problems, URL pars-
ing errors, and other security weaknesses. In one in-
stance, these URLs triggered an intrusion detection sys-
tem, which then identified CoDeeN as the culprit.

3 Solutions
Our guiding principle in developing solutions to address
these security problems above was to allow users at Plan-
etLab sites as much access to the Web as they would have
without using a proxy, and to allow other users as much
“safe” access as possible. To tailor access policies, we
classify client IP addresses into three groups – those lo-
cal to this CoDeeN node, those local to any site hosting a
PlanetLab node, and those outside of PlanetLab.

3.1 Rate Limiting
The “outside” clients face the most restrictions on using
CoDeeN, limiting request types as well as resource con-
sumption. Only their GET requests are honored, allow-
ing them to download pages and perform simple searches.
The POST method, used for forms, is disallowed. Since
forms are often used for changing passwords, sending e-
mail, and other types of interactions with side-effects, the
restriction on POST has the effect of preventing CoDeeN

from being implicated in many kinds of damaging Web in-
teractions. For the allowed requests, both request rate and
bandwidth are controlled, with measurement performed
at multiple scales – the past minute, the past hour, and the
past day. Such accounting allows short-term bursts of ac-
tivity, while keeping the longer-term averages in control.

To handle overly-aggressive users we needed some
mechanism that could quickly be deployed as a stopgap.
As a result, we added an explicit blacklist of client IP ad-
dresses, which is relatively crude, but effective in handling
problematic users. This blacklist was not originally part of
the security mechanism, but was developed when dictio-
nary attacks became too frequent. We originally analyzed
the access logs and blacklisted clients conducting dictio-
nary attacks, but this approach quickly grew to consume
too much administrative attention.

The problem with the dictionary attacks and even the
vulnerability tests is that they elude our other tests and
can cause problems despite our rate limits. However, both
have fairly recognizable characteristics, so we used those
properties to build a fairly simple signature detector. Re-
quests with specific signatures are “charged” at a much
higher rate than other rate-limited requests. We effectively
limit Yahoo login attempts to about 30 per day, frustrat-
ing dictionary attacks. We charge vulnerability signatures
with a day’s worth of traffic, preventing any attempts from
being served and banning the user for a day.

Reducing the impact of traffic spreaders is more diffi-
cult, but can be handled in various ways. The most le-
nient approach, allowing any client to use multiple nodes
such that the sum does not exceed the request rate, re-
quires much extra communication. A stricter interpreta-
tion could specify that no client is allowed to use more
than K proxies within a specified time period, and would
be more tractable. We opt for a middle ground that pro-
vides some protection against abusing multiple proxies.

In CoDeeN, cache misses are handled by two proxies –
one acting as the client’s forward proxy, and the other as
the server’s reverse proxy. By recording usage informa-
tion at both nodes, heavy usage of a single proxy or heavy
aggregate use can be detected. We forward client infor-
mation to the reverse proxies, which can then determine
that a client is using multiple forward proxies. While for-
warding queries produces no caching benefit, forwarding
them from outside users allows request rate accounting to
include this case. So, users attempting to perform Yahoo
dictionary attacks (which are query-based) from multiple
CoDeeN nodes find that using more nodes does not in-
crease the maximum number of requests allowed. With
these changes, login attempts passed to Yahoo have have
dropped by a factor of 50 even as the number of attackers
has tripled.

3.2 Privilege Separation
Protecting licensed content required more work, since
it requires identifying what content is licensed. Using
Princeton’s e-journal subscription list as a starting point,
we extracted all hostnames and pruned them to coalesce
similarly-named sites, merging journal1.example.com
and journal2.example.com into just example.com. We
do not precisely associate subscriptions with universities,
since that determination would be constantly-changing
and error-prone. For clients trying to access licensed con-
tent, those that are local to the CoDeeN proxy are permit-
ted, while others are currently given an error message. In
the future, when dealing with accesses to licensed sites,
we may redirect clients from other CoDeeN sites to their
local proxies, and direct all “outside” clients to CoDeeN
proxies hosted at sites without any subscriptions.

Protecting hosting sites from outside exposure cannot
use the coarse-grained blacklisting approach suitable for
licensed content. Otherwise, entire university sites and
departments would become inaccessible. To address this
problem, we use multiple proxies at different locations to
de-escalate request privilege. We determine if a request
to example.edu originates locally at example.edu, and if
so, the request is handled directly by the CoDeeN node.
Otherwise, the request is forwarded to a CoDeeN node at
another hosting site. To eliminate the exposure caused by
forwarding a request to a site where it is local, we mod-
ify our forwarding logic – no request is forwarded to a
CoDeeN proxy local to the origin server.

Since our security mechanisms depend on comparing
hostnames, we also disallow accesses to machines iden-
tified only by their numerical IP addresses. After imple-
menting this approach, we found that some requests using
numerical IP addresses were still being accepted. In the
HTTP protocol, proxies receive requests that can contain
a full URL, with hostname, as the first request line. Ad-
ditional header lines will also identify the host by name.
We found some requests were arriving with differing in-
formation in the first line and in the Host header. We had
not observed that behavior in any Web browser, so we as-
sume such requests were custom-generated, and modified
our redirector to reject such abnormal requests.

4 Results
In the first eight weeks after its relaunch, CoDeeN has op-
erated with only brief outages for software upgrades, and
has serviced over 24 million requests from over 59000
unique IP addresses. Our traffic is growing, as shown
in Figure 2, and we have become the most heavily-used
service on PlanetLab. We have received a handful of
queries/complaints from system administrators at the lo-
cal PlanetLab sites, and all but one have been false alarms.
Most queries have been caused by system administrators

0 10 20 30 40 50
0

5

10

15
x 10

5

days since June 1, 2003

Se
rv

ic
ed

 re
qu

es
ts

/d
ay

Figure 2:Daily traffic on CoDeeN has been steadily increas-
ing, and approaches one million serviced requests per day.

or others using/testing the proxies, surfing through them,
and then concluding that they are open proxies.

We have been using CoDeeN daily, and have found that
the security restrictions have few effects for local users.
Using non-Princeton nodes as our forward proxy, we have
found that the restrictions on licensed sites can be overly
strict at times. We expect that when we complete its im-
plementation, bouncing requests to completely unprivi-
leged nodes, the special handling for those sites will not
be noticeable. By changing the configuration information,
we have also been able to use CoDeeN as an outside user
would see it. Even on our high-speed links, the request
rates limits have not impacted our daily browsing.

Restricting outside users from using POST does not ap-
pear to cause significant problems in daily use. Searches
are commonly handled using the GET method instead of
the POST method, and many logins are being handled via
HTTPS/SSL, which bypasses the proxy. The most no-
ticeable restrictions on outsiders using POST has been the
search function on Amazon.com and some chat rooms.
In eight weeks of use, local users have generated fewer
than 300 POST requests, with the heaviest generator be-
ing software update checkers from Apple and Microsoft.

Our security measures have caused some confusion
amongst malicious users. We routinely observe clients
testing proxies and then generating requests at very
high rates, sometimes exceeding 50K reqs/hour. How-
ever, rarely do CoDeeN nodes see more than 20K valid
reqs/hour. Some clients have generated over a million un-
successful requests in stretches lasting longer than a day.

5 Related Work
Commercial content distribution networks, such as Aka-
mai [1], Mirror Image [6], and Speedera [9], commonly
deploy reverse proxies to replicate content, but their con-
tent is restricted to the Web sites of their customers. By
using DNS-based redirection, or explicit URL modifica-

tion [5], access to these systems is performed without
explicit cooperation of the end user. Some concerns re-
garding malicious behavior are common with CoDeeN –
clients could presumably request a large, previously un-
cached document via multiple proxies, causing a surge of
demand at the origin servers. However, we are not aware
of any public information on what mechanisms are used
to handle such instances.

Cooperative proxy cache schemes have been previously
studied in the literature [3, 8, 11, 13], and CoDeeN shares
many similar goals. However, to the best of our knowl-
edge, the only deployed systems have been based on the
Harvest-like approach. Two large-scale cache projects in-
volve providing proxy caches hierarchies. The main dif-
ferences between CoDeeN and these systems are in the
scale, the nature of who can access, and the type of service
provided. Neither system uses open proxies. The NLANR
Global Caching Hierarchy [7] operates ten proxy caches
that only accept requests from other proxies and one proxy
cache open to end users. Cache access is password-
controlled and requires registration. The JANET Web
Cache Service [4] consists of 17 proxies in England, all
of which are accessible only to other proxies. Joining
the system requires providing your own proxy, register-
ing, and using an access control list to specify which sites
should not be forwarded to other caches. Entries on this
list include electronic journals.

6 Conclusions & Future Work
In CoDeeN, we have deployed a large-scale network of
mostly-open proxies and addressed many of the security-
related problems that have historically plagued such sys-
tems. These techniques have served us well, allowing us
to keep our system running continuously for over four
months, without having to worry about nodes being deac-
tivated due to security/policy concerns. We feel that our
approach to security, consisting of classification, rate lim-
iting, and privilege separation, provides a model for other
Web-accessible services.

The longer-term goal of our work in this area is to au-
tomatically detect and classify unusual traffic, and either
use some general-purpose rules to handle it, or bring it
to the attention of a human for further analysis. Such an
approach would have the advantage that it could adapt to
newer types of traffic, and would require less monitoring
than some of our current techniques. It would also help to
be able to identify unusual patterns automatically, in the
event that determined malicious users attempt to escalate
the sophistication of their attacks.

In this vein, some of our ongoing research involves de-
tecting machine-generated requests and using this infor-
mation in our policies. Previous work in this area has
involved machine-learning techniques performingpost-

facto classification of requests [10]. Our approaches in-
volve dynamically modifying HTML pages and determin-
ing how the changes affect the request stream. For exam-
ple, if hidden links are inserted into pages, and are consis-
tently traversed, chances are high that the request source
is a crawler. Similar inferences can be drawn from inter-
request timings, request URL similarity, and the down-
loading of embedded images and style sheets. By quickly
classifying automated request generators, rates limits can
be adjusted lower more quickly than would be appropri-
ate for human users. In a similar vein, we may be able to
permit more POST requests from outside users.

Acknowledgments
This research was supported in part by DARPA contract
F30602–00–2–0561 and by in-kind support from Intel,
Hewlett-Packard and iMimic Networking. We would like
to thank Mic Bowman and everyone managing Planet-
Lab for their patience with complaints as we developed
CoDeeN. We also thank our anonymous reviewers for
their valuable comments on improving this paper.

References
[1] Akamai. Content Delivery Network. http://www.akamai.com.

[2] BOPM. Blitzed Open Proxy Monitor.
http://www.blitzed.org/bopm/.

[3] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell. A hierarchical internet object cache. InUSENIX
Annual Technical Conference, pages 153–164, 1996.

[4] JANET Web Cache Service. http://wwwcache.ja.net.

[5] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. InProceedings of the Eighth International
World-Wide Web Conference, 1999.

[6] Mirror Image. http://www.mirror-image.com.

[7] National Laboratory for Applied Network Research (NLANR). Ir-
cache project. http://www.ircache.net/.

[8] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are created
equal: cooperative proxy caching over a wide-area network.Com-
puter Networks and ISDN Systems, 30(22–23):2253–2259, 1998.

[9] Speedera. http://www.speedera.com.

[10] P. N. Tan and V. Kumar. Discovery of web robot sessions based
on their navigational patterns. InSpecial Issue of the International
Journal of Data Mining and Knowledge Discovery on Web Mining
for E-commerce, 2001.

[11] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considera-
tions for distributed caching on the internet. InInternational Con-
ference on Distributed Computing Systems, pages 273–284, 1999.

[12] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Request
Redirecion on CDN Robustness. InProceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[13] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin,
and H. M. Levy. On the scale and performance of cooperative web
proxy caching. InSymposium on Operating Systems Principles,
pages 16–31, 1999.

